Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.19.549739

ABSTRACT

Inhibitors of the SARS-CoV-2 main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function on these mutants are thus urgently needed. We hypothesized that the covalent HCV protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more tightly than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to NTV. A crucial feature of ML2006a4 is a novel derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Finally, ML2006a4 is less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory drug design can preemptively address potential resistance mechanisms.


Subject(s)
COVID-19
2.
J Stroke Cerebrovasc Dis ; 31(8): 106589, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1945834

ABSTRACT

OBJECTIVES: To derive models that identify patients with COVID-19 at high risk for stroke. MATERIALS AND METHODS: We used data from the AHA's Get With The Guidelines® COVID-19 Cardiovascular Disease Registry to generate models for predicting stroke risk among adults hospitalized with COVID-19 at 122 centers from March 2020-March 2021. To build our models, we used data on demographics, comorbidities, medications, and vital sign and laboratory values at admission. The outcome was a cerebrovascular event (stroke, TIA, or cerebral vein thrombosis). First, we used Cox regression with cross validation techniques to identify factors associated with the outcome in both univariable and multivariable analyses. Then, we assigned points for each variable based on corresponding coefficients to create a prediction score. Second, we used machine learning techniques to create risk estimators using all available covariates. RESULTS: Among 21,420 patients hospitalized with COVID-19, 312 (1.5%) had a cerebrovascular event. Using traditional Cox regression, we created/validated a COVID-19 stroke risk score with a C-statistic of 0.66 (95% CI, 0.60-0.72). The CANDLE score assigns 1 point each for prior cerebrovascular disease, afebrile temperature, no prior pulmonary disease, history of hypertension, leukocytosis, and elevated systolic blood pressure. CANDLE stratified risk of an acute cerebrovascular event according to low- (0-1: 0.2% risk), medium- (2-3: 1.1% risk), and high-risk (4-6: 2.1-3.0% risk) groups. Machine learning estimators had similar discriminatory performance as CANDLE: C-statistics, 0.63-0.69. CONCLUSIONS: We developed a practical clinical score, with similar performance to machine learning estimators, to help stratify stroke risk among patients hospitalized with COVID-19.


Subject(s)
COVID-19 , Stroke , Adult , COVID-19/complications , COVID-19/diagnosis , Hospitalization , Humans , Risk Assessment/methods , Risk Factors , Stroke/diagnosis , Stroke/epidemiology , Stroke/therapy
3.
Natural Product Communications ; 15(12):1934578X20978025, 2020.
Article in English | Sage | ID: covidwho-970155

ABSTRACT

In the process of fighting against COVID-19 in China, Xingnaojing injection has been recommended for its clinical treatment, but the information about its active components and mechanism is still lacking. Therefore, in this work, using network pharmacology and molecular docking, we studied the active components of Xingnaojing injection having anti-COVID-19 properties. Using the DL parameter, TCMSP and CNKI databases were used to screen the active components of the Xingnaojing injection. Then, the SwissTargetPrediction webserver was used to collect the corresponding gene targets, and the gene targets related to COVID-19 were searched in the Genecards database. The DAVID database was used to enrich the function of gene targets, and the KOBAS3.0 database for the annotation of related KEGG pathways. The ?components?targets?pathways? network of Xingnaojing injection was constructed with Cytoscape 3.6.1 software. The protein?protein interaction networks were analyzed using the String database. Specific proteins, SARS-COV-2 3 Cl, ACE2, and the active components were imported into Discovery Studio 2016 Client for molecular docking studies. From the Xingnaojing injection, a total of 58 active components, including Divanillalaceton and Q27139023, were screened. These were linked to 53 gene targets including mitogen-activated protein kinase 1 (MAPK1), tumor necrosis factorTNF, epidermal growth factor receptor, MAPK3, and 196 signaling pathways related to COVID-19, such as apoptosis, C-type lectin receptor signaling pathway, and hypoxia-inducible factor 1 signaling pathway. Furthermore, molecular docking studies were performed to study potential binding between the key targets and selected active components. Xingnaojing injection exhibits anti-COVID-19 effects via multiple components, multiple targets, and multiple pathways. These results set a scientific basis for further elucidation of the anti-COVID-19 mechanism of Xingnaojing injection.

SELECTION OF CITATIONS
SEARCH DETAIL